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“My new working definition for profound is: 
obvious only in retrospect.”

- Robin Stewart blog, 2010



If you throw a die ten times and 
get a six every time, is there a 
higher change the next one will 
also be a six?  
Or a lower chance?



“Frequentists”

The chance that something can happen 
Probabilities are objective things that tell us 
something about the world

You must imagine you can do something an infinite 
amount of times.  The proportions of outcomes will 
then indicate the probabilities.

If I flip a coin an infinite number of times, I will get 
50/50 heads and tails.

John Edmund Kerrich (1903-1985) spent his time 
as prisoner during the second world war 
conducting experiments in probability using coins 
and ping-pong balls.  Excerpt from his coin-toss 
experiments on the left.

Two schools of thought 
on probability



The problem with frequentism is that many events happen only once.

What does a probability mean in these instances?

SA won the world cup, but what was the probability that we would 
win?  What does it even mean to ask this now, in hindsight?



Bayesians are in the other camp…

Probabilities are expressions of your states of belief in 
cases of uncertainty or incomplete information

Subjective.
Personal.
About beliefs.

Bayesians keep on asking: 
how well do we know what we think we know?

The outcome of an election

The outcome of a surgical procedure

Frequentists think like mathematicians, see the world as 
exact and objective and capable of being clearly defined.

Two schools of thought 
on probability



1701 – 1761
Statistician, philosopher and Presbyterian minister

Published only two works in his academic life

…the infamous Bayes Theorem was not one of them

1723 – 1791 
Discovered Bayes Theorem after Bayes’ death in unfinished works

Realised the significance of the theorem.  
Believed the theory could assist in proving the existence of God.

Presented to the Royal Society on 23 Dec 1763



A familiar application – pathology 

Sensitivity (true negative rate TNR) = probability 
the test will give a negative result if patient is 
indeed negative

Specificity (true positive rate TPR) = probability 
the test will give a positive result if patient is 
indeed negative

Hypothesis (I have 
the disease)

Evidence (I have tested 
positive for the disease)

Prior probability 
of having the disease
(before test result)

Probability of testing 
positive (E) if you 

have the disease (H)
= specificity

Probability of 
testing positive

P(H)*P(E|H)+P(H’)*P(E|H’)
Correct positive result plus false positive result

P(H|E) = P(E|H) * P(H)
P(E)

Now imagine you tested positive 
for a really bad but rare disease

Specificity of test is 99%

Prevalence of the disease is 
1 out of 1000 (0.1%)



A familiar application – pathology 

P(H|E) = 

Hypothesis (I have 
the disease)

Evidence (I have tested 
positive for the disease)

P(E|H) * P(H)
P(E)

Prior probability 
of having the disease
(before test result)

Probability of testing 
positive (E) if you 

have the disease (H)
= specificity

Probability of 
testing positive

P(H)*P(E|H)+P(H’)*P(E|H’)
Correct positive result plus false positive result

Often the hardest part 
– and most of the 
time just a guess0.001

0.001 * 0.99             +    0.999  *  0.01 = 0.01098

0.01098

0.99

9.016%Now imagine you tested positive 
for a really bad but rare disease

Specificity of test is 99%

Prevalence of the disease is 
1 out of 1000 (0.1%)



Out of a thousand people…



Out of a thousand people…
…one is likely to have the disease (0.001 x 1000)



Out of a thousand people…
…one is likely to have the disease (0.001 x 1000)
…while ten are likely to have false positives (0.01 x 1000)

One out of eleven = 9%



“Steve is very shy and withdrawn, 
invariably helpful but with very 
little interest in people or in the 
world of reality.  A meek and tidy 
soul, he has a need for order and 
structure, and a passion for 
detail.”

Is Steve more likely to be 
a librarian or a farmer?

Research by Kahneman and Tversky found 
the vast majority of respondents suggest 
Steve is more likely a librarian

…Almost no one appeared to incorporate 
the ratio of farmers to librarians in their 
responses

About 1 librarian for every 20 farmers
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If it is true that there are 20 farmers for every librarian, let us imagine a polulation like this:



10 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

40% chance a 
librarian fits this 

description
=4 librarians

Only a 10% chance a farmer fits this description
=20 farmers

P(H|E) = P(E|H) * P(H)
P(E)

So about 4 librarians and 20 farmers fit this description. 

Therefore, probability that a random person fitting this description is a librarian is 4 / 24 = 16.7%
Despite the fact that a librarian is four times as likely to fit the description

= 40% * 10
4+20

= 4
24

= 16.7% 

+

Odds of being a librarian

Odds of fitting the description



P(H) = probability a hypothesis is true 
(before any evidence)

P(E|H) = probability of seeing the 
evidence if the hypothesis is true

P(E) = probability of seeing the 
evidence

P(H|E) = probability a hypothesis is true 
given some evidence

New evidence does not determine your beliefs in a 
vacuum.  It should update your prior beliefs.

Prior belief:  1 librarian for every 20 farmers 
(4.7% chance of being a librarian)

Evidence:  Steve is a nerd

Updated belief:  
16.7% chance of being a librarian
(“posterior” belief)



Central to Bayesian theory is that we can never know the world perfectly.  
We must continue to update our beliefs of the world as evidence emerges.

Bayes’ theorem was meant to be used iteratively.

New evidence does not determine your beliefs in a 
vacuum.  It should update your prior beliefs.



Will the sun rise again tomorrow?



Out of a thousand people…
…one is likely to have the disease (0.001 x 1000)
…while ten are likely to have false positives (0.01 x 1000)

One out of eleven = 9%



P(H|E) = P(E|H) * P(H)
P(E)

prior belief

posterior belief

P(H|E) = P(E|H) * P(H)
P(E)

new prior belief

0.1%

0.01098

0.99

9.016%

P(H|E) = P(E|H) * P(H)
P(E)

Suppose I redo this test to get a second opinion.  
Suppose this result is also positive.

= P(E|H) * P(H)
(H)*P(E|H)+P(H’)*P(E|H’)

Correct positive False positive

P(H|E) = P(E|H) * P(H)
P(E)

9.016%0.99

9.016% * 0.99 90.984% * 0.01

90.7%new posterior belief

and so on…



P(H|E) = P(E|H) * P(H)
P(E)

prior belief

posterior belief

P(H|E) = P(E|H) * P(H)
P(E)

new prior belief

0.1%

9.016%

90.7%new posterior belief

and so on…

Updated belief after 
one positive test

evidence

evidence

Updated belief after 
two positive tests

Prior view





Correlation vs causation
Third (common causal) variable
“obesity and CO2 levels both increased historically, so if 
we all pick up weight we could solve global warming”

Reverse causation 
“firemen must be the cause of fires because whenever I 
see a fire, there are firemen around”

Coincidental relationship
Washington Redskins home game vs election results



Correlation CausationCorrelation can never prove causation.  But Bayes shows us how 
each observation related to a hypothesis can iteratively update 
our beliefs as to whether the hypothesis is likely.

If observations keep on supporting our hypothesis, we can grow 
more and more certain that it is an accurate view.

First perhaps a rickety bridge, later a more solid construction.
Never infallible, but progressively stronger if evidence supports.



A doctor seeing positive results using 
experimental Covid-19 treatment.  Without the 
luxury or time to perform randomised double-

blind clinical trials.

Bayes can provide progressively more certainty 
on efficacy provided evidence holds



Bayes usefulness in bridging the correlation-
causation gap comes with one serious caveat:

We should NEVER be 100% or 
0% certain about any belief

P(H|E) = P(E|H) * P(H)
P(E)

P(H|E) = P(E|H) * P(H)
P(E)

P(H|E) = P(E|H) * P(H)
P(E)

P(H|E) = P(E|H) * P(H)
P(E)

0%0.1%

9.1%

92%

97%

Healthy Bayesian process…

100%

0%

0%

0%

100%

100%

100%

Absolute belief 
with 0% or 100% 
certainty

Absolute beliefs 
can never change.  
0% times anything 
remains 0%.



Absolute beliefs cannot be updated by considering more evidence
It is vital to expose oneself to contrary evidence and weigh this carefully through the Bayesian 
process, testing the validity of your own beliefs.  

Is the earth round?  Yes.  But I’m only 99.9% sure of that…



It always seems impossible
until it is done



Different 
ways to think 

about 
probability

Some 
probabilities 

are 
personal, result 

in beliefs

The danger of  
holding 

absolute beliefs

Evidence 
should never 
determine

your belief, it 
should merely 

UPDATE

Iterative 
updating of 
prior beliefs

Summary

• Machine 
learning

• Medicine
• Science

Bayes can help 
bridge the gap 

between 
correlation and 

causation



Q&A
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